
A Collective, Probabilistic Approach to Schema
Mapping Using Diverse Noisy Evidence

Angelika Kimmig , Alex Memory ,Member, IEEE, Ren�ee J. Miller,Member, IEEE,

and Lise Getoor,Member, IEEE

Abstract—We propose a probabilistic approach to the problem of schema mapping. Our approach is declarative, scalable, and

extensible. It builds upon recent results in both schema mapping and probabilistic reasoning and contributes novel techniques in both

fields. We introduce the problem of schema mapping selection, that is, choosing the best mapping from a space of potential mappings,

given both metadata constraints and a data example. As selection has to reason holistically about the inputs and the dependencies

between the chosen mappings, we define a new schemamapping optimization problem which captures interactions between mappings

as well as inconsistencies and incompleteness in the input. We then introduce Collective Mapping Discovery (CMD), our solution to this

problem using state-of-the-art probabilistic reasoning techniques. Our evaluation on a wide range of integration scenarios, including

several real-world domains, demonstrates that CMD effectively combines data and metadata information to infer highly accurate

mappings even with significant levels of noise.

Index Terms—Schema mapping, data integration, probabilistic logic, optimization

Ç

1 INTRODUCTION

SCHEMA mappings are collections of complex logical
statements which relate multiple relations across data

sources with different schemas, and thus can be used to
exchange data between these sources. Efficient techniques
for reasoning about the suitability of different schema map-
pings are crucial to manage the massive number, complex-
ity, and size of data sources. While the metadata and data
of the sources often provide evidence for how to best map
them, this evidence is rarely complete or unambiguous. To
reason effectively about mappings, we thus need techniques
grounded in mapping understanding that can reason about
open-world scenarios using uncertain, imperfect evidence.

We study the problem ofmapping selection, that is, of select-
ing from a large set of possiblemappings, amapping that best
relates a source and a target schema. We define the mapping
selection problem for the entire language of st tgds (source-to-
target tuple-generating-dependencies; also known as GLAV
mappings) which is arguably the most commonly used map-
ping language [1]. We prove that exactly solving this problem
is NP-hard already for full st tgds, i.e., st tgds without

existential quantifiers. We then provide an efficient and
highly accurate approximate solution to this problem based
on state-of-the-art probabilistic reasoning.

Historically, approaches to schema mapping discovery
and selection have considered a wide variety of inputs. Early
approaches use metadata (schema constraints) and attribute
correspondences (aka schema matchings) to create mappings
that are consistent with the metadata [2], [3]. Metadata in the
form of query logs has been used to select mappings that
are most consistent with frequently asked queries [4]. Many
different approaches use data to refine a mapping or to select
a mapping from among a set of schemamappings [5], [6], [7],
[8], [9], [10], [11], [12]. Other approaches solicit user feedback
to define scores for each view in a set of candidate views and
then select an optimal set of views based on these scores [13].
All of these approaches have merit, but are tailored to a spe-
cific form of input evidence, and either work for limited map-
ping languages, like views, or assume consistent or complete
input, which is difficult to prepare or find. An exception to
this is the approach by Alexe et al. [12] that considers bad data
examples that are consistent with several (candidate) map-
pings or none. They consider how such bad examples can be
turned into good examples that are consistent with a single,
desiredmapping.

Wedefine a newmapping selection problem that uses both
data andmetadata collectively as input. None of the evidence
is required to be consistent or complete, rather we find the
subset of st tgds that are best supported by the given evidence
as a whole. Metadata can serve as a guide through a poten-
tially massive set of possible mappings, suggesting mappings
that are consistent with schema semantics (e.g., joining rela-
tions on a foreign key). Data can reinforce metadata evidence.
Data can also rule out a mapping that is consistent with
the metadata, but inconsistent with large parts of the data.

� A. Kimmig is with the School of Computer Science and Informatics, Cardiff
University, Cardiff CF10 3AT, United Kingdom.
E-mail: KimmigA@cardiff.ac.uk.

� A. Memory is with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: memory@cs.umd.edu.

� R. J. Miller is with the College of Computer and Information Science, North-
easternUniversity, Boston,MA 02115. E-mail: miller@northeastern.edu.

� L. Getoor is with the University of California at Santa Cruz, Santa Cruz,
CA 95064. E-mail: getoor@ucsc.edu.

Manuscript received 20 Jan. 2018; revised 24 July 2018; accepted 31 July 2018.
Date of publication 17 Aug. 2018; date of current version 3 July 2019.
(Corresponding author: Alex Memory.)
Recommended for acceptance by L. Dong.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2865785

1426 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Metadata can obviate the need to have two pristine data
instances as input that precisely define a single bestmapping.
Furthermore, our framework is declarative and extensible to
new forms of evidence including scores (such as user-feed-
back annotations) on themetadata and data evidence.

Our solution adopts and extends some of the latest tech-
niques from the probabilistic reasoning community. These
techniques are routinely used to combine logical constraints
in relational domains with the ability to handle uncertainty
and conflicting information. Building upon work of Gottlob
and Senellart [18], we refine their concepts of validity and
fully explaining to define what it means for a single tuple to
be either an (incomplete) error for a mapping or (partially)
explained by a mapping. Using these notions, we define our
probabilistic optimization problem using probabilistic soft
logic (PSL) [14], a scalable probabilistic programming lan-
guage based on weighted logical rules. PSL has been used
successfully for a variety of data and knowledge integration
problems, including knowledge graph identification [15]
and data fusion [16], [17]. It however did not support
the kind of open world reasoning required for mapping
selection, where we need to express constraints over the
existence of elements in a set satisfying certain conditions,
namely, st tgds in the mapping explaining tuples in the data
example, and furthermore, preferences over these elements
are available. We therefore extend PSL with prioritized dis-
junctions, which provide a tractable framework for handling
such existential, weighted constraints, and thereby allow us
to define key features of the mapping selection problem.
To use data and metadata as input, we use the extended
PSL language as a common representation for both. The
data evidence comprises a data example and the metadata
evidence comprises a set of st tgds. By having a common
language for reasoning, we can easily integrate data and
metadata evidence by, for example, reasoning about
whether a data example satisfies metadata evidence such as
part of a mapping.

We refer to our solution as Collective Mapping Discovery
(CMD), because it reasons collectively both about multiple
forms of evidence and over the interactions between differ-
ent st tgds. CMD advances the state-of-the-art in schema
mapping by using more kinds of evidence and integrating
them at a much finer-grained level of detail than attempted
in the past. In addition, the declarative nature of CMD
makes it easy to extend in a variety of ways.

We perform an extensive empirical validation of our
approach. We use the integration benchmark iBench [18] to
test CMD on a wide variety and large number of mapping
scenarios. We use IQ-METER [19], a multi-criterion evalua-
tion measure, to confirm the quality of CMD’s output. We
compare CMD with a baseline approach which uses only
metadata. We show that the accuracy of CMD is more than
33 percent above that of a metadata-only approach already
for small data examples. We illustrate the robustness of our
approach by demonstrating that we are able to find accurate
mappings even if a quarter of the data is dirty. We demon-
strate that the approach scales well with the size of both
metadata and data, and effectively selects small, correct
mappings even if dozens of competing candidate mappings
are available for each tuple. In addition, we show that CMD
is effective on several problems with real data.

This paper expands on our earlier work [20], proving
complexity results, and contributing experimental results
on additional real world problems as well as problems with
an order of magnitude greater complexity. Section 2 illus-
trates the key challenges with an example. Section 3 intro-
duces the selection problem for st tgds without existentially
quantified variables, and Section 4 extends this to st tgds.
Section 5 introduces our solution using PSL and our exten-
sion of PSL with prioritized disjunctions. We discuss experi-
ments in Section 6 and related work in Section 7.

2 MOTIVATING EXAMPLE

Fig. 1a shows a pair of source and target schemas, foreign
keys (solid lines) and attribute correspondences (or matches,
dotted lines), which we will use as a running example.

Fig. 1. Motivating example; see Section 2 for details.

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1427

The metadata is ambiguous, as it is not clear from the sche-
mas whether task:supervisor in the target schema is associ-
ated with proj:mgr or proj:lead in the source schema. A data
example in the form of an instance of the source schema (I)
and an instance of the target schema (J) can help resolve
such ambiguity. The data example in Fig. 1b, where org and
leader are empty, suggests that supervisors in task tuples
correspond tomgr in the source, not lead. Interactive schema
mapping refinement techniques use data to select among
a set of mappings. They take as input a set of candidate
mappings and use data to interactively guide a user
in selecting a subset that is correct [5], [21], or in correcting
a set of data examples so that a “best fitting” mapping
exists [22]. The interactive nature of these solutions permits a
user to decide what mapping is best given metadata and
data evidence. In contrast, we do this reasoning automati-
cally to find the best fittingmapping.

We consider the problem of combining metadata evi-
dence (in the form of a set of candidate mappings) and
potentially imperfect data evidence (in the form of a data
example) to select an optimal mapping. More specifically,
our candidate mappings are source-to-target tuple-generat-
ing-dependencies (st tgds).1 These are simple first-order
logic statements relating a source query and a target query.
The candidates may come from a mapping design tool like
Clio [23] or ++Spicy [24], or may have been mined from
a query log [4].

A key challenge in mapping selection is that the number
of possible selections is exponential in the number of candi-
date st tgds. Consider the candidates in Fig. 1d, focusing
first on our earlier data example (Fig. 1b) and candidates u0
and u1. Notice that the data example is valid for u0 (meaning
(I,J) satisfy the mapping u0) but is not valid with respect to
u1, as there is no tuple ðBigData;Bob;�Þ (with some oid).
We call such a missing tuple an error. Errors might be
caused by dirty data. The data example contains a tuple
ðBigData;Alice; 111Þ and this tuple may be dirty (the value
Alice is wrong and should be Bob) causing this error. If the
data is clean, this error tuple would suggest that we should
prefer u0 over u1.

Note that u0 and u1 both ignore the correspondence
between emp:company and org:name. Mapping u2 also
explains the data (intuitively), but it explains more, as it
creates org tuples for which we have no data evidence. If we
change our data example to include the org tuples in Fig. 1c,
the data suggests that we should select both u2 and u4. The
mapping u2 alonemaps the inner join of the source data to the
target. Mappings u2 and u4 togethermap the right outer-join.

If we also add the leader tuples in Fig. 1c to our data
example, u5 explains all leader tuples. However, u5 is not
valid with respect to the data, as it also suggests that tuple
ðPatÞ should appear in leader, but it does not and thus is an
error for u5. The mapping u6 addresses this by joining emp
with proj via proj:lead; it both explains and is valid with
respect to the leader example data. Generally, we seek
sets of st tgds that collectively explain the data and are valid
with respect to the data. On that basis, the set fu2; u4; u6g
is a good choice.

Note that our candidates u0 - u6 use only correspondences
c1-c4 in Fig. 1a. If a matcher incorrectly suggested correspon-
dence c5, then we may get additional candidate mappings
like u7 or u8 that use this correspondence. However, in this
example (and in many real examples) a small data example
can eliminate such candidates, as they are likely not to
explain the data or be valid.

This example illustrates many challenges in schema
mapping discovery from metadata and data.

DIRTY OR AMBIGUOUS METADATA. Our goal is to find a
mapping that fits the metadata. In practice, the number of
such mappings can be huge, due to metadata ambiguities
such as 1) multiple foreign key paths between relations; 2)
the choice between inner and outer joins; 3) the presence of
bad correspondences. Dirty metadata (for example, incor-
rect foreign keys) exacerbates this problem. Data can help in
selecting correct mappings. We tackle the problem of com-
bining metadata and data evidence to effectively and effi-
ciently select a mapping, even if the data does not fully
disambiguate all metadata. In our example, we may have
some target tuples that are consistent with a join on mgr (u0)
and some that are consistent with a join on lead (u1); e.g.,
ðML;Alice; 111Þ is consistent with both u0 and u1. Our solu-
tion will weigh the evidence to find a mapping that is most
consistent with the evidence as a whole.

UNEXPLAINED DATA. We are given example source (I) and
target (J) data and our goal is to find a mapping that
explains the target data. In practice, we rarely have perfect
data examples that only contain target data explained by I.
Indeed, the open nature of st tgds permits the target to have
independent data that was not derived from the source. For
example, suppose there is a target org ð333;BMÞ, and the
value BM does not appear in the source. This data may be
correct data (the target has data about the BankofMontreal

and the source does not) or it may be dirty data (perhaps
the value BM was mistyped and should be IBM). Even if no
candidate explains these tuples, we still want to find the
best mapping. So our optimization should not fail in the
presence of such unexplained tuples. Furthermore, if there is
a mapping that explains all data, we may not choose it if it
is not valid with respect to the data example, or if it is con-
siderably more complex than one that fails to explain a few
tuples in J .

DATA ERRORS. Our goal is to find a mapping that is valid
for the given data example ðI; JÞ. Again, in practice, it is
unrealistic to assume a data example that is perfect in this
way. Hence, we provide a solution that is tolerant of some
errors (for example, some dirty source data or some missing
target data), but seeks to find a set of st tgds for which the
errors are minimized.

UNKNOWN VALUES. Our goal is to find a mapping that may
use existential quantification where appropriate. This is
challenging, as such mappings introduce unknown or null
values in the target. For instance, st tgds u0 and u1 both only
cover part of target tuple ðML;Alice; 111Þ, as they cannot
“guess” the value of the oid. Still, we need to compare them
to st tgds that may have no existentials and therefore cover
entire target tuples. This problem is made more challenging
as existentials play a critical role in identifier (or value)
invention where the same existential value is used in multi-
ple tuples to connect data together. It is important that

1. The term mapping is often used both for a single st tgd and for
a set of st tgds. Here, we use candidate mapping or candidate to refer to
a single st tgd; while mapping generally refers to a set of st tgds.

1428 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

mappings that correctly connect the data be considered
better than mappings that use different existentials.
For example, we prefer u2 over the combination of u0 and u4,
since the data supports the connection u2 makes between
task and org in the target. This is an important aspect of
the problem that has not been considered by earlier work
on view (also known as full st tgd) selection [13].

To address these challenges, we present a fine-grained,
scalable solution that gives an st tgd credit for each tuple it
can explain or partially explain (in the case of existential
mappings) and aggregates this information to find a set of
st tgds that best explain the data. A set of st tgds is penal-
ized for each error tuple (the more errors the less valid the
mapping). Hence, we find the set of candidate st tgds that
collectively minimize the number of errors and number of
unexplained tuples, even under contradictory or incomplete
evidence.

3 SELECTION OVER FULL MAPPINGS

We first define mapping selection for full st tgds [1], that is,
st tgds without existentially quantified variables, and
extend our definitions to arbitrary st tgds in Section 4.

3.1 Mapping Selection Inputs

We define our mapping selection problem with respect to a
source schema S and a target schema T, where a schema is a
set of relations. The data evidence consists of a data example,
that is, a pair of instances I of S and J of T. The metadata evi-
dence consists of a (finite) set C of candidate st tgds. An
st tgd is a logical formula 8x fðxÞ ! 9y cðx; yÞ; where f is a
conjunction of atoms over the relations of S and c over
those of T [1]. Here, x and y are sets of logical variables. If y
is empty (no existentials) then the st tgd is a full st tgd [25].

Candidate st tgds can be generated using existing schema
mapping systems. Such systems, both industrial systems and
research systems, generate sets of candidate mappings and
generally let users select or refine these mappings using a
variety of visual interfaces. To generate candidate mappings,
research systems like Clio [23], HepTox [26], and ++Spicy [24]
use schema constraints, while U-Map [4] uses query logs. By
building on these existing approaches, we focus on candidate
mappings that are plausible according to the metadata and
the methodology used in candidate generation rather than all
possiblemappings.

3.2 Characterizing the Input Quality

Given metadata evidence (S, T, C), our goal is to find a sub-
set M � C that best “fits” the data example ðI; JÞ. Let C be
the set of all constants in I [J , and N a set of labeled nulls
(disjoint from C). Following Fagin et al. [25], a homomor-
phism between instances h : K1 ! K2 is a mapping from
C [N to C [N such that: (1) for every c 2 C, hðcÞ ¼ c, and
(2) for every RðtÞ of K1, RðhðtÞÞ is in K2. A homomorphism
h : fðxÞ ! K is a mapping from the variables x to C [N
such that for every Rðx1; . . . ; xnÞ in fðxÞ, Rðhðx1Þ; . . . ; hðxnÞÞ
is in K. Let M be a set of st tgds, then an instance K of T is
called a solution for I, if ðI;KÞ � M. An instanceK is a univer-
sal solution if it is a solution and if for every other solutionK0,
there is a homomorphism h : K ! K0. Fagin et al. [25]
showed how a universal solution can be computed efficiently

using the chase over M (and such a universal solution is
typically called a canonical universal solution).

Gottlob and Senellart [7] call a mappingM valid for ðI; JÞ
if J is a solution for I under M. Suppose ðI; JÞ 6� M. Intui-
tively, this means J misses tuples that must be in every
solution for I. We call such tuples errors. A ground tuple t
(that is, a tuple containing only constants) is a full error if it
is not in J but in every J 0 such that ðI; J [J 0Þ � M. If K is a
universal solution forM and I, then t is a full error iff t 2 K
and t 62 J . If ðI; JÞ is valid with respect to M then there are
no full errors.

Example 1. The candidate u5 in Fig. 1d is not valid with
respect to the data example in Fig. 1c. However, if we add
the tuple t0 ¼ leaderðPatÞ to J then u5 is valid for
ðI; J [t0Þ. Thus, ðPat) is a full error, and the only full error.

Ideally, all tuples in J should be explained, that is, be a
result of the selected candidate mappings applied to I.
Again following Gottlob and Senellart [7], a mapping
M � C and source instance I explain a ground fact t, if t 2 K
for everyK such that ðI;KÞ � M. A mappingM and I fully
explain J if they explain every tuple in J . A ground tuple t is
explained by M and I iff t is in a universal solution for M
and I, else t is an unexplained tuple. As with validity, we
would like to permit exceptions, that is, a few tuples in J
that are unexplained, meaning J is not fully explained.

Example 2. Consider again u5 of Fig. 1d. For the instance I
of emp shown in (b), u5 fully explains J (the two leader

tuples) shown in (c). However, if leader also contained
leaderðJoeÞ, then u5 would still be valid, but leaderðJoeÞ
is an unexplained tuple.

3.3 Collective Selection over Full Mappings

We now define an optimization problem for finding a map-
ping M � C that best fits our imperfect evidence by jointly
minimizing:

1) the number of unexplained tuples;
2) the number of error tuples; and
3) the size ofM.
The first two are formalized through functions that, for a

candidate set M, compare the given target instance J to the
solution for M and I, i.e., check how many tuples in J are
unexplained (collectively) by M, and how many tuples

Fig. 2. Illustration of functions errorfullð�Þ and explainsfullð�Þ.

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1429

resulting from data exchange with each st tgd in M are not
in J . Fig. 2 illustrates these different kinds of tuples.

Let KC (respectively, KM and Ku) be a canonical univer-
sal solution for I and C (respectively,M and u). We consider
full st tgds so canonical universal solutions are unique.
We define createsfullðu; tÞ as follows:

createsfullðu; tÞ ¼
1 t 2 Ku

0 otherwise:

�

(1)

We then define errorfullðM; tÞ for a tuple t 2 KC � J (Fig. 2
left side) to be the number of st tgds in M for which t is an
error.

errorfullðM; tÞ ¼
X

u2M

ðcreatesfullðu; tÞÞ: (2)

Correspondingly, for the tuples in J (Fig. 2 right side), we
define the function explainsfullðM; tÞ, which checks whether
such a tuple is explained byM.

explainsfullðM; tÞ ¼ 1 if t 2 J \KM and 0 otherwise: (3)

We call tuples in J �KC that cannot be explained by any
st tgd in C unexplainable tuples (Fig. 2g).

Finally, we define the size function sizeðMÞ to be the
sum of the number of atoms in each u 2 M.

sizeðMÞ ¼
X

u2M

ðnumber atoms in uÞ: (4)

This choice of complexity term provides a guard against
including st tgds with insufficient support from the evidence.
Taking these three criteria together, we formally define the
mapping selection problem for full st tgds as follows.

Given schemas S, T, a data example ðI; JÞ, and a set C of
candidate full st tgds

Find argmin
M�C

�

X

t2J

½1� explainsfullðM; tÞ�

þ
X

t2KC�J

½errorfullðM; tÞ�

þ sizeðMÞ

�

:

(5)

As we show in Section 3.4, this problem is NP-hard.
Notice the similarity of the mapping selection problem with

the formal framework for schema mapping discovery of
Gottlob and Senellart [7]. They propose a way of repairing a
mapping to (1) explain unexplained tuples and to (2) make
the mapping valid for an invalid data example (in other
words, to account for error tuples). They define an optimal
mapping as one that minimizes a cost function containing
three parts: the size of the mapping; the number of the
repairs needed to account for unexplained tuples; and
the number of repairs needed to account for error tuples.
In contrast, we are counting error and unexplained tuples
rather than using algebraic operators to repair the mapping.
We weight each of these three components equally in our
problem definition. However, our formalization permits
each part to be weighted differently if there is a priori knowl-
edge of the scenarios.

In terms of Fig. 2, our goal is to find an M that jointly
minimizes the number of unexplained but explainable

tuples (those in (f)), the number of errors (those in (c)) and
the size of M. Note that every M � C receives a constant
penalty for unexplainable tuples (the tuples in J �KC (g)).
These tuples can easily be removed for efficiency before
running the optimization.

Note a subtle but important difference in how we treat
errors and unexplained tuples. The definition of errorfullð�Þ
considers each candidate in M individually, and sums the
number of errors made by each. That is, if two st tgds ui 2 M
and uj 2 M both make an error on t, that error is counted
twice. In other words, we seek a mapping where as few as
possible of the st tgds in the mapping make an error on t. In
contrast, we do not require each st tgd in the mapping to
explain all tuples in J , but consider it sufficient if at least one
u 2 M explains a tuple. Thus, we cannot treat each u individ-
ually, but wemust reason about the setM as a whole.

3.4 Mapping Selection is NP-Hard

The errorfullð�Þ and sizeð�Þ terms of (5) are modular and act as
constraints on the supermodular explainsfullð�Þ term. Such
minimization tasks are often NP-hard, and we provide
proof that this is also the case for our selection problem.

Theorem 1. The mapping selection problem for full st tgds as
defined in (5) is NP-hard.

Proof. We use a reduction from SET COVER, which is well
known to be NP-complete, and is defined as follows:

Given a finite set U , a finite collection R ¼ fRi j Ri �
U; 1 � i � kg and a natural number n � k, is there a
set R0 � R consisting of at most n sets Ri such that
S

Ri2R0Ri ¼ U?

We first consider the decision variant of mapping
selection, which is defined as follows:

Given schemas S, T, a data example ðI; JÞ, a set C of
candidate full st tgds, and a natural number m, is there a
selection M � C with F ðMÞ � m, where F ðMÞ is the
function minimized in (5)?

F ðMÞ ¼
X

t2J

½1� explainsfullðM; tÞ�

þ
X

t2KC�J

½errorfullðM; tÞ� þ sizeðMÞ:
(6)

We construct a mapping selection decision instance
from a SET COVER instance as follows. We set m ¼ 2n,
introduce an auxiliary domain D ¼ f1; . . . ;mþ 1g, and
define

S ¼ fRi=2 j Ri 2 Rg

T ¼ fU=2g

C ¼ fRiðX;Y Þ ! UðX; Y Þ j Ri 2 Rg

J ¼ fUðx; yÞ j ðx; yÞ 2 U 	Dg

I ¼
[

Ri2R
fRiðx; yÞ j ðx; yÞ 2 Ri 	Dg:

We use notation R=k to indicate relation R has arity k. It
is easily verified that this construction is polynomial in
the size of the SET COVER instance. It is easily verified
that this construction is polynomial in the size of the SET
COVER instance. We next show that the answers to SET

1430 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

COVER and the constructed mapping selection problem
coincide.

For each Ri, the candidate st tgd ui ¼ RiðX; Y Þ !
UðX;Y Þ has size two, makes no errors (as Ri � U), and
for each x 2 Ri explains the tuples Uðx; 1Þ; . . . ; Uðx;mþ
1Þ. We thus have

F ðMÞ ¼
X

t2J

½1� explainsfullðM; tÞ� þ 2 � jMj (7)

¼ ðmþ 1Þ � jUj � j
[

ui2M
Rij

� �

þ 2 � jMj: (8)

A mapping M � C with F ðMÞ � m ¼ 2n thus exists
if and only if j

S

ui2M
Rij ¼ jU j and jMj � n, which is

exactly the case where M encodes a covering selection
with at most n sets. Furthermore, if such mappings exist,
the optimal mapping according to (5) is one of them, and
a polynomial time solution for mapping selection with
full st tgds can thus be used to find a candidate solution
that can be verified or rejected in polynomial time to
answer SET COVER. tu

4 SELECTION OVER ST TGDS

We now extend our approach to the complete language
of st tgds with existentially quantified variables, showing
how we assign credit for the shared null values such
st tgds introduce. We begin by generalizing our two
functions errorfullð�Þ and explainsfullð�Þ to model the partial
evidence provided by st tgds with existentials. We then
revisit our optimization problem using the new, more
general functions.

4.1 Incomplete Errors

In contrast to errorfullð�Þ, an error function for arbitrary
st tgds has to take into account incomplete tuples, that is,
tuples with nulls created by a mapping with existentials.

Example 3. The candidate u1 in Fig. 1d is not valid with
respect to the data example in Fig. 1b. However, if we add
the tuple t1 ¼ taskðBigData;Bob; 123Þ to J then u1 is valid
for ðI; J [t1Þ. But this specific tuple is not in every J 0
 J
for which u1 is valid. Hence, t1 is not a full error. However,
a tuple k1 ¼ taskðBigData;Bob; N0) (where N0 is a labeled
null representing any constant) up to the renaming of the
null must be in every such J 0. Furthermore, such a tuple
is inKu1

, the canonical universal solution for u1 over I.

Intuitively, for this example, a tuple in KC should be an
error if there is no homomorphism from that tuple to J .
This is sufficient to consider k1 to be an error for the original
J of Fig. 1b, but not an error if we add t1 to J . However,
once an existentially quantified variable is shared between
several atoms, we need a more general definition.

Example 4. The candidate u3 in Fig. 1d is not valid with
respect to the extended data example in Fig. 1b and 1c.
For it to be valid, J would have to contain two tuples
k1 ¼ taskðBigData;Bob; N0) and k2 ¼ orgðN0, IBM) with
a shared labeled null enabling the join on proj:lead.
Suppose we add t1 ¼ taskðBigData;Bob; 123Þ from above
to J and t2 ¼ orgð333; IBMÞ to J . If we just required each
tuple in Ku3

to have a homomorphism to some tuple in J ,

then neither would be considered an error, as there
are homomorphisms from k1 to t1 and from k2 to t2.
However, the instance J [t1 [t2 does not correctly
connect Bob to IBM. Hence, we would like to consider
both tuples to be errors.

To address these issues, our errorð�Þ function is based
on homomorphisms from all tuples in KC resulting from a
single chase step. If t is in the result of a chase step over
u ¼ 8xfðxÞ ! 9 ycðx; yÞ, we call all (target) tuples resulting
from this chase step (including t) the context of t under u or
contextuðtÞ.

2 We define the following helper function

createsðu; tÞ ¼

0 t 2 KC � J; t 62 Ku

0 t 2 Ku � J; 9h : contextuðtÞ ! J

1 t 2 Ku � J and no such h exists:

8

<

:

(9)

Now forM � C we define the errorð�Þ function as follows.

errorðM; tÞ ¼
X

u2M

createsðu; tÞ: (10)

In Fig. 3, which extends Fig. 2 for selection over st tgds,
errorð�Þ divides KC � J into three parts for given M: the
tuples in (a) are created by no st tgd in M, those in (b) do
not count as errors because homomorphisms exist from
them to J , and the remaining st tgds in (c) count as errors.

Recall that in the canonical universal instance KC nulls
are only shared between tuples generated by a single chase
step. So each incomplete tuple t 2 KC (containing one or
more nulls) is associated with a single chase step and
st tgd u. Hence, for such a tuple t, Equation (10) evaluates to
1 if there is no homomorphism from the contextuðtÞ to J ,
i.e., t is an error, and 0 otherwise. For a ground tuple tg
(with no nulls), if there is no homomorphism to J (meaning
the tuple is not in J), Equation (10) counts how many candi-
dates make this error.

4.2 Partially Explained Tuples

We now extend explaining to arbitrary st tgds. More pre-
cisely, we use tuples with labeled nulls coming from st tgds
with existentially quantified variables to partially explain
tuples in the target instance J through homomorphisms.

Fig. 3. Illustration of explainsð�Þ and errorð�Þ for selecting st tgds.

2. For this to be well-defined, we require that each candidate st tgd u

is normalized into a set of smaller logically equivalent st tgds where
only atoms that share existentials are retained in a single st tgd [1].

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1431

Example 5. Consider u1 in Fig. 1d and tuple t ¼ task

ðBigData;Alice; 111Þ in Fig. 1b. u1 partially explains t via
a homomorphism from k ¼ taskðBigData;Alice; N1) to t.
In the absence of candidates that fully explain t, we might
include u1 in our selection.

To define partial explanation, we treat nulls that play a
structural role in connecting information like constants. For
a tuple t 2 J and a candidate u, we call k 2 Ku a possible
explanation for t under u if there is a homomorphism
h : contextuðkÞ ! J with hðkÞ ¼ t. Let Eðt; uÞ be the set of
all possible explanations for t under u. We call a labeled
null unique if it appears exactly once in contextuðkÞ.
For k 2 Eðt; uÞ, we define nullðkÞ to be the number of unique
nulls in k divided by the arity of k. So nullðkÞ ¼ 0 if k
contains only constants or labeled nulls used at least twice.
Otherwise, nullðkÞ > 0. We say that k explains t to degree
1� nullðkÞ, and define the auxiliary function coversðu; tÞ for
t 2 J based on the maximal degree to which t is explained
by any tuple:

coversðu; tÞ ¼
maxk2Eðt;uÞð1� nullðkÞÞ Eðt; uÞ 6¼ ;

0 Eðt; uÞ ¼ ;

�

: (11)

A mapping M � C explains a tuple t as well as the best
st tgd u 2 M does.

explainsðM; tÞ ¼ max
u2M

coversðu; tÞ: (12)

Equation (12) can be used to divide J into three parts
(Fig. 3) for a given M: those tuples fully (d) or partially (e)
explained through tuples in (b), and those that cannot be
explained byM at all (f).

Using the same size function as for full st tgds, we define
the general mapping selection problem as follows:

Given schemas S, T, a data example ðI; JÞ, and a set C of
candidate st tgds

Find argminM�C

X

t2J

½ð1� explainsðM; tÞÞ�

þ
X

t2KC�J

½errorðM; tÞ�

þ sizeðMÞ:

(13)

The only difference with the case of full st tgds is that we now
use notions of error and explaining suitable for st tgds with
existentially quantified variables. In terms of Fig. 3, we seek
a small M that minimizes the error in (c) and maximizes
the degree towhich tuples in (d) and (e) are explained.

If all candidates are full, this optimization coincides with
the one in (5), and so is NP-hard as well (see Section 3.4).
In Section 5, we provide an efficient approximation algo-
rithm for finding a high quality solutionM.

4.3 Example of Selection over ST TGDs

We extend the running example to illustrate objective (13).
We use a reduced candidate set C0 ¼ fu1; u3g (Fig. 1d) and the
data in Fig. 1b and 1c, but omit the leader relation. A univer-
sal solution Ku1

for I contains the task tuples ðBigData;Bob;
Null1) and ðML;Alice;Null2), while a solution Ku3

contains
the task tuples ðBigData;Bob;Null3) and ðML;Alice;Null4)
and the org tuples ðNull3, IBM) and ðNull4, SAP).

For u1, createsð�Þ is 1 for tuple taskðBigData;Bob;Null1),
and 0 for all other tuples, and coversð�Þ is 2=3 for taskðML;
Alice; 111Þ and 0 otherwise. This is because taskðML;Alice;
Null2) partially explains the latter via a homomorphism
mapping Null2 to 111. Similarly, for u3, createsð�Þ is 1 for
taskðBigData;Bob;Null3) and orgðNull3,IBM), but 0 for task
ðML;Alice; Null4) and orgðNull4; SAP Þ, which partially
explain taskðML;Alice; 111Þ and orgð111;SAPÞ to degree
3=3 and 2=2 respectively, via a homomorphism mapping
Null4 to 111, with corresponding values for coversð�Þ.
The different subsets of candidate st tgds thus obtain the
following values for the individual parts and the total of
objective function (13).

M
P

1� explains
P

error size (13)

fg 4 0 0 4
fu1g 31=3 1 3 71=3
fu3g 2 2 4 8
fu1; u3g 2 3 7 12

The minimal value for the objective is that of the empty
mapping, that is, the complexity term fullfils its role of
guarding against overfitting on too little data here. But we
also see that fu1g is preferred over fu3g, which in turn is pre-
ferred over fu1; u3g. The reason is that while u3 covers more
tuples than u1, it also produces more errors and is larger. If
we add data for at least five more projects X of the same
kind as the ML one, i.e., pairs of tuples projðX;N; 1Þ and
taskðX;Alice; 111Þ, the preferred mapping is fu3g, as the
empty mapping cannot explain the new target tuples, u1
explains each to degree 2=3, and u3 fully explains them (while
no mapping introduces additional errors).

5 PROBABILISTIC MAPPING SELECTION

Wenow introduceCollectiveMappingDiscovery (CMD), our
efficient solution for schemamapping selection, using techni-
ques from the field of probabilistic modeling [27] and statisti-
cal relational learning (SRL) [28]. Specifically, CMD encodes
the mapping selection objective (Equation (13)) as a program
in probabilistic soft logic [14], and uses PSL inference to
instantiate and solve the optimization problem. Inference in
PSL is highly scalable and efficient, as it avoids the combinato-
rial explosion inherent to relational domains (the relations
errorð�Þ and explainsð�Þ) by solving a convex optimization
problem, while providing theoretical guarantees on solution
qualitywith respect to the combinatorial optimum.

However, like the majority of SRL methods, PSL relies on
a closed world assumption to ensure a well-defined pro-
bability distribution. While we will not entirely remove
this restriction, we introduce prioritized disjunctions, a novel
extension to PSL that allows for existentials over closed
domains (the existence of an st tgd u, in our case) while
maintaining the convexity of inference, which makes it pos-
sible to encode and efficiently solve model selection prob-
lems such as the mapping selection problem.

5.1 Probabilistic Soft Logic

PSL [14] is a language for defining collective optimization
problems in relational domains. It comes with an efficient
and scalable solver for these problems. The key underlying

1432 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

idea is to (1) model desirable properties of the solution as
first-order rules, (2) allow random variables to take on soft
values between 0 and 1, rather than Boolean values 0 or 1,
and (3) let the system find a truth value assignment to all
ground atoms in the domain that minimizes the sum of the
distance to satisfaction of all ground instances of the rules.

A PSL program is a set of weighted rules

w : b1ð~XÞ ^ � � � ^ bnð~XÞ ! h1ð~XÞ _ � � � _ hmð~XÞ; (14)

where ~X is a set of universally-quantified variables, the
bið~XÞ and hjð~XÞ are atoms over (subsets of) the variables in
~X, and w is a non-negative weight corresponding to the
importance of satisfying the groundings of the rule. In first-
order logic, a grounding of such a rule is satisfied if its body
evaluates to false (0) or its head evaluates to true (1). PSL
generalizes this into a rule’s distance to satisfaction, which is
defined as the difference of the truth values of the body and
the head (set to zero if negative), and uses soft truth values
from the interval ½0; 1� instead of Boolean ones. It relaxes
the logical connectives using the Lukasiewicz t-normand its co-
norm, which is exact at the extremes, provides a consistent
mapping for values in-between, and results in a convex opti-
mization problem. Given an interpretation I of all ground
atoms constructed from the predicates and constants in the
program, the truth values of formulas are defined as follows.

Ið‘1 ^ ‘2Þ ¼ maxf0; Ið‘1Þ þ Ið‘2Þ � 1g

Ið‘1 _ ‘2Þ ¼ minfIð‘1Þ þ Ið‘2Þ; 1g

Ið:l1Þ ¼ 1� Ið‘1Þ:

The distance to satisfaction of a ground rule r ¼ body !
head is defined as follows:

drðIÞ ¼ maxf0; IðbodyÞ � IðheadÞg: (15)

Let R be the set of all ground rules obtained by grounding
the program with respect to the given constants. The proba-
bility density function f over I is

fðIÞ ¼
1

Z
exp �

X

r2R

wrðdrðIÞÞ

" #

; (16)

where wr is the weight of rule r and Z is a normalization
constant. PSL inference finds argmaxIfðIÞ, that is, the inter-
pretation I that minimizes the sum of the distances to
satisfaction of all ground rules, each multiplied by the corre-
sponding rule weight. Typically, truth values for some of
the ground atoms are provided as evidence, that is, they
have observed fixed truth values, and we only need to infer
the optimal interpretation of the remaining atoms. PSL finds
an exact optimum using soft truth values, which is then
converted to a high quality discrete solution [14].

5.2 Mapping Selection in PSL

We now encode the mapping selection problem as a PSL
program. We introduce three observed predicates that
encode tuple membership in the target instance J and the
coversð�Þ and createsð�Þ functions defined in Section 4,
respectively, and one predicate in whose truth values
denote membership of candidate st tgds in the selection,
and thus need to be inferred by PSL. A given data example

ðI; JÞ and set of candidate st tgds C will introduce a constant
for every tuple in KC [J and for every candidate in C. We
use the logical variable F for st tgds, and T for tuples. The
CMD program consists of the following rules:

sizeðF Þ : inðF Þ ! ? (17)

1 : JðT Þ ! 9F: coversðF; T Þ ^ inðF Þ (18)

1 : inðF Þ ^ createsðF; T Þ ! JðT Þ: � (19)

Rule (17) implements the size penalty by stating that we
prefer not to include an st tgd in the selected set: its
weighted distance to satisfaction is sizeðfÞ � ðIðinðfÞÞ � 0Þ,
and thus minimal if inðfÞ is false. Rule (18) states that if a
tuple is in J , there should be an st tgd in the set that covers
that tuple, thus implementing the explainsð�Þ term. Note
that the existential quantifier is not supported by PSL; we
describe how we extend PSL and implement this efficiently
in the next section. Rule (19) states that if an st tgd creates a
tuple, that tuple should be in J , or conversely, if a tuple is
not in J (and thus in KC � J), no st tgd in the selected set
should create it. This implements the errorð�Þ penalty.
The advantage of this approach is that it reasons about the
interactions between tuples and st tgds in a fine-grained
manner. In Section 5.4 we show the rules combine to imple-
ment the mapping selection objective (13).

5.3 Prioritized Disjunction Rules

In first-order logic (with finite domains), formulas with exis-
tential quantifiers, such as Rule (18) above, can be rewritten
by expanding the existential quantifier into a disjunction
over all groundings of its variables; however, in the context
of PSL, the resulting disjunction of conjunctions in the head
of a rule is expensive and non-convex to optimize in gen-
eral. We therefore show how to efficiently handle a practi-
cally important subclass of such rules through a novel
rewriting approach. We call these rules prioritized disjunction
rules, as they implement a choice among groundings of an
existentially quantified variable using observed soft truth
values to express preferences or priorities over the alterna-
tives (in the case of Rule (18), over st tgds to be selected).
A prioritized disjunction rule is a rule

w : bðXÞ ! 9Y: hoðY;XÞ ^ hiðY Þ; (20)

where bðXÞ is a conjunction of atoms, hoðY;XÞ is an
observed atom and hiðY Þ is an atom whose value will be
inferred. In our case, see (18), bðXÞ is JðT Þ, hoðY;XÞ is
coversðF; T Þ, and hiðY Þ is inðF Þ. The observed truth values
of the hoðY;XÞ atoms reflect how good a grounding of Y is
for a grounding of X, as the truth value of the head will be
higher when assigning high truth values to hiðY Þ with high
hoðY;XÞ. To efficiently support this comparison of alterna-
tives, we introduce a k-prioritization for some natural num-
ber k, restricting the truth values of hoðY;XÞ to f0=k; . . . ;

k=kg
only. This allows us to rewrite each prioritized disjunction
rule into a collection of rules, where we first expand the
existential quantifier in the usual way, and then introduce
a rule for each priority level.

Consider first the Boolean case, i.e., k ¼ 1. In this case,
every disjunct hoðY;XÞ ^ hiðY Þ is either false or equivalent

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1433

to hiðY Þ. Since hoðY;XÞ is observed, for every grounding y of
Y , we can either drop the entire disjunct if hoðy;XÞ is false
or drop hoðy;XÞ if it is true, leaving only hiðyÞ in the disjunc-
tive head. This leaves us with a standard PSL rule with a
(possibly empty) disjunction of hi atoms in the head.

For arbitrary k, we generalize this by grouping the head
elements based on the priorities. For each grounding bðxÞ of
the rule body bðXÞ, we create one ground rule for every
j ¼ 1; ::; k of the following form:

w=k : bðxÞ !
_

hoðx;yÞ�j=k

hiðyÞ:

That is, we have a set of rules with identical bodies whose
heads are progressively more general disjunctions of hi

atoms.

w=k : bðxÞ !
_

hoðx;yÞ2fk=kg

hiðyÞ

w=k : bðxÞ !
_

hoðx;yÞ2fk=k;
ðk�1Þ=kg

hiðyÞ

..

.

w=k : bðxÞ !
_

hoðx;yÞ2fk=k;
ðk�1Þ=k;...;

1=kg

hiðyÞ:

To understand the idea behind this transformation, assume
for the moment that all hiðyÞ have fixed, Boolean truth val-
ues, and let m=k be the highest value hoðx; yÞ takes for this x
and any ywith hiðyÞ ¼ 1, i.e.,

m=k ¼ max
fy j hiðyÞ¼1g

hoðx; yÞ:

Then, the rules for j ¼ 1; ::;m are satisfied (because their
head evaluates to 1), and the ones for j ¼ ðmþ 1Þ; ::; k are
not satisfied (because their head evaluates to 0). More pre-
cisely, their distance to satisfaction is the truth value of bðxÞ,
and each of these thus contributes w=k � IðbðxÞÞ to the overall
distance to satisfaction, which for this set of ground rules is

ðk�mÞ � w=k � IðbðxÞÞ ¼ w � 1� max
fy jhiðyÞ¼1g

hoðx; yÞ

� �

� IðbðxÞÞ:

If b is observed, e.g., IðbðxÞÞ ¼ 1 as in the case of (18), this
expression depends purely on the maximum value of ho.

Example 6. Consider a single grounding of Rule (18) for
t ¼orgð111;SAPÞ in J from Fig. 1c and the candidates u3
and u4 from Fig. 1d. The expanded ground rule is

1 : > ! coversðu3; tÞ ^ inðu3Þ _ coversðu4; tÞ ^ inðu4Þ:

Predicate org has arity two, so we get a 2-prioritization
with possible values coversðF; tÞ 2 0=2;

1=2;
2=2

� �

. Using val-
ues coversðu3; tÞ ¼

2=2 and coversðu4; tÞ ¼
1=2, we replace

the initial ground rule with

1=2 : > ! inðu3Þ _ inðu4Þ
1=2 : > ! inðu3Þ;

which completes the rewriting from a rule with existen-
tial quantification to a set of regular PSL rules.

To summarize, we have shown an efficient transforma-
tion of a PSL rule with existentials over disjunctions of con-
junctions in the head into a (compact) set of regular PSL rules
using prioritized disjunctions. Furthermore, the soft-truth
value semantics of the disjunction is the maximum over the
disjuncts—which we will show to be a useful choice. While
this extension wasmotivated by the mapping selection prob-
lem, we expect it to also be useful in other scenarios that
involve choices between variable numbers of alternatives.

5.4 Objective Equivalence

Recall from Equation (13) that our goal is to minimize

X

t2J

½1�max
u2M

coversðu; tÞ� (21)

þ
X

t2KC�J

X

u2M

createsðu; tÞ

" #

(22)

þ
X

u2M

sizeðuÞ: (23)

We now demonstrate that, for Boolean values of the inðuÞ
atoms, this is exactly the objective used by our PSL program.

We get a grounding of Rule (17) for every st tgd u 2 C

sizeðuÞ : inðuÞ ! ?: (24)

For u 2 M, this rule has distance to satisfaction 1, and 0 oth-
erwise. Thus, each u 2 M adds sizeðuÞ to PSL’s distance to
satisfaction, so those rules together correspond to (23). The
error Rule (19) is trivially satisfied for tuples in J (and any
st tgd). Thus, we only need to consider the groundings for
t 2 KC � J and u 2 C

1 : inðuÞ ^ createsðu; tÞ ! ?: (25)

Such a ground rule has distance to satisfaction createsðu; tÞ
�0 ¼ createsðu; tÞ. Recall from Equation (9) that this can
only be non-zero for t 2 Ku � J . The PSL sum thus adds
1 � createsðu; tÞ for every u 2 M and t 2 Ku � J , which
equals (22). Rule (18) is trivially satisfied for t 62 J , and for
every t 2 J results in a partially ground rule

1 : > ! 9F: coversðF; tÞ ^ inðF Þ: (26)

To complete the grounding, we apply PSL’s prioritized dis-
junction rules. Recall (cf. Section 4.2) that the coversð�Þ func-
tion takes on values according to the null function, which is
the number of unique nulls divided by the arity of a tuple.
Therefore, we know there are values f0=k; . . . ; k=kg for
coversðF; tÞ where k is the arity of the tuple t. Thus we get
for each t 2 J a set of k ground rules, the ith of which is

1=k : > !
_

u2C;coversðu;tÞ�i=k

inðuÞ: (27)

We know that for every t 2 J , the associated groundings
collectively contribute a distance to satisfaction of

1� 1 �max
u2M

coversðu; tÞ;

due to prioritized disjunction rules rewriting, which equals
(21). Thus, theCMD program optimizes Equation (13).

1434 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

5.5 Collective Mapping Discovery

To summarize, given data example ðI; JÞ and candidates C,
CMD does the following two steps.

1) Compute truth values of evidence from ðI; JÞ and C
2) Perform PSL inference on the CMD program and

evidence and return the corresponding mapping
Step 1 (data preparation) performs data exchange to deter-

mine the tuples in KC, and computes the truth values of the
jCj 	 jKC � J j many createsð�Þ atoms (based on Equation (9))
and of the jCj 	 jJ j many coversð�Þ atoms (based on Equa-
tion (11)).While finding a discrete solution to the optimization
problem defined by the CMD program and evidence is NP-
hard, Step 2 (CMD optimization) provides an extremely scal-
able approximate solutionwith theoretical quality guarantees.

6 EVALUATION

We experimentally evaluate CMD on a variety of scenarios,
both synthetic and real world, showing that it robustly han-
dles ambiguous and dirty metadata as well as dirty tuples
in the data example, and scales well with the size of both
metadata and data. We also demonstrate that our priori-
tized disjunction rules enable efficient inference for complex
mapping scenarios. We ran our experiments on an Intel
Xeon with 24 x 2.67 GHz CPU and 128 GB RAM. Our imple-
mentation of CMD and instructions for reproducing all
experiments can be found online.3

6.1 Scenario Generation

Each of our scenarios consists of a data example ðI; JÞ for a
pair of schemas S and T and a set C of candidate st tgds,
which form the input for CMD, and a gold standard
mapping MG used to assess the quality of the solution.
Scenario generation uses the following steps:

1) We generate schemas S and T, correspondences, the
initial data example ðI; JGÞ, and a gold standard
mapping MG that is valid and fully explaining
for ðI; JGÞ using the metadata generator iBench [18]
and data generator ToxGene [29].

2) To create dirty metadata, we generate additional for-
eign key constraints and correspondences.

3) We use the implementation of the Clio [3] algorithm
provided by ++Spicy [24] to generate the set of
candidates C from the schemas, foreign key con-
straints and correspondences generated in previous
steps, that is, based on metadata only.

4) We generate J starting from JG, introducing errors
and unexplained tuples with respect toMG.

The rest of this section provides more details on this pro-
cess, and Table 1 lists the parameters controlling it. All
experimental parameters are for scenario generation; we set
their defaults and ranges to produce realistic scenarios.

STEP 1. iBench uses transformation primitives to create
realistic complex mapping scenarios. We chose a represen-
tative set of seven primitives.4 One invocation of this set cre-
ates a total of eight source and ten target relations, and
seven st tgds in MG. Three of those are full, the other four
all contain existentials used once or twice and include exis-
tentials that are shared between relations. To create larger
scenarios, we invoke the set pInvocations times. We set the size
of I to pTuplesPerTable per relation.

STEP 2. To obtain candidate st tgds with wrong join paths,
we use iBench to add randomly created foreign keys to
pFKPerc% of the target relations. To obtain candidate st tgds
making wrong connections between the schemas, we intro-
duce additional correspondences as follows. We randomly
select pCorresp% of the target relations. For every selected tar-
get relation T , we randomly select a source relation S from
those of the iBench primitive invocations not involving T
(so Clio [23] can generate MG as part of C). For each attri-
bute of T , we introduce a correspondence to a randomly
selected attribute of S.

STEP 4. We restrict data instance modifications to errors
and explainable tuples with respect to MG, as unexplain-
able tuples can be removed prior to optimization
(cf. Section 3.3). In our scenarios, MG � C, and thus
KG � KC. So each tuple in KC is either generated by both
MG and C�MG, only by MG (i.e., an error tuple if deleted
from J), or only by C�MG (i.e., a new explainable tuple if
added to J). As tuples in KC may have nulls, we take into
account homomorphisms when determining which of these
cases applies to a given tuple. We randomly select a set JNew

containing pExplainable% of the potential new explainable
tuples, and a set JErr containing pErrors% of the potential
error tuples, and set J ¼ JG [JNew n JErr.

6.2 Evaluation of Solution Quality

We assess quality by comparing the mapping M � C
selected by CMD to (1) the correct mapping MG produced
by iBench and (2) the set C of all candidates produced
by Clio, which serves as our metadata-only baseline.
Since Clio does not use data, we are not confounding in our
experiments how CMD uses data with other proposed
approaches. Directly comparing mappings is a hard prob-
lem, so we follow the standard in the literature which is
to compare the data exchange solutions produced by the
mappings [30].We use the core data exchange algorithm of +
+Spicy [24] to obtainKM andKC. The gold standard instance

TABLE 1
Overview of Main Experimental Parameters

Parameter Range Default

pInvocations 1 - 10 2
pTuplesPerTable 10 - 100 50
pFKPerc 0 - 10% 0%
pCorresp 0 - 100% 0%
pErrors 0 - 30% 0%
pExplainable 0 - 100% 0%

3. http://projects.linqs.org/project/cmd

4. CP copies a source relation to the target, changing its name. ADD
copies a source relation and adds attributes; DL does the same, but
removes attributes instead; and ADL adds and removes attributes to
the same relation. The number that are added or removed are con-
trolled by range parameters, which we set to (2,4). ME copies two rela-
tions, after joining them, to form a target relation. VP copies a source
relation to form two, joined, target relations. VNM is the same as VP
but introduces an additional target relation to form a N-to-M relation-
ship between the other target relations.

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1435

KG for MG is the original target instance J obtained from
iBench in the first step. We compare these instances using
the IQ-METER [19] quality measure. IQ-METER measures the
ability of a mapping to generate correct tuples as well as cor-
rect relational structures via labeled nulls or invented values,
so it is appropriate as an evaluation measure for our map-
pings which contain existentials. It calculates recall and pre-
cision of tuples and recall and precision of joins. The distance
between mappings is then defined as one minus the har-
monic mean of these four measures; for full details, see
Mecca et al. [31]. We directly use the harmonic mean, which
we call IQ-scoreðK1;K2Þ 2 ½0; 1�, where higher is better.

6.3 CMD Accuracy over Ambiguous Metadata

We begin by assessing the ability of CMD to handle ambig-
uous or dirty metadata and still identify a good mapping
from the set of candidates. We increase the number of can-
didate st tgds by increasing the pFKPerc parameter from 0 to
10 percent and the pCorresp parameter from 0 to 100 percent.
We use five scenarios per parameter setting, with an aver-
age of 800 source and 1,000 target tuples. CMD always
found the correct mapping, i.e., it resolved all metadata
ambiguities based on the data example. In contrast, for Clio,
which uses metadata only, the IQ-scores decreased with
more imprecise evidence, as shown in Fig. 4.

6.4 CMD Accuracy over Dirty Data

Our second experiment investigates the effect of imperfect
data on mapping quality. We vary the percentage pErrors of
added errors from 0 to 30 percent in steps of five, and the per-
centage pExplainable of additional explainable tuples from 0 to
100 percent in steps of 25. We set pCorresp ¼ 100% to maxi-
mize the number of potential explainable but undesired
tuples. We consider five scenarios in each case, with 800
source tuples and 1,000 tuples in the initial target instance J .
The numbers of additional tuples obtained range from zero
to 300 for errors and from zero to 1,800 for explainable tuples.

In Fig. 5, we plot IQ-score as we vary pErrors and
pExplainable. Generally, as the number of errors increases,
i.e., more correct tuples are missing from the target instance,
the quality of the mapping selected by CMD decreases, as
there is less incentive to include candidates that would cor-
rectly explain such tuples, which results in lower IQ-score
due to lower recall. Adding explainable tuples also gener-
ally decreases the quality of the mapping, as they provide
incentives to include additional st tgds that, while explain-
ing those dirty tuples, generally decrease precision and thus
IQ-score. However, in the presence of significant numbers

of errors, explainable tuples increase mapping quality.
This happens whenever explainable tuples cause CMD to
select st tgds in C�MG that are similar to MG, e.g., omitting
a target join on an existential variable, and when selecting
those st tgds is preferred over the empty mapping. For sce-
narios with over one quarter additional explainable tuples,
and even in the presence of a few (less than 10 percent)
errors, CMD routinely finds mappings with high IQ-scores.
This confirms that the fine-grained optimization score
handles increasing noise levels gracefully.

6.5 Performance of CMD

The next set of experiments evaluates the performance of
our approach along several dimensions. We focus on optimi-
zation time, i.e., the time to find an optimal mapping after
data preparation is completed. Data preparation (determin-
ing which tuples are errors or unexplained for each st tgd in
C) is slow, taking up to 150 minutes in our largest scenarios;
it would be easy to optimize this time, however that is not a
focus of our current work.

DATA SIZE. We vary pTuplesPerTable from 10 to 100 in steps of
10 tuples to obtain data examples of increasing size for our
default schema size of 36 relations. We generate five scenar-
ios for each setting. Fig. 6a plots the average optimization
time in CMD and average time to generate C (the Clio base-
line). CMD optimization times are comparable to Clio times
even though we optimize over relatively large (3,600 tuple)
data examples.

SCHEMA SIZE. We vary pInvocations from 1 to 10 to increase
the sizes of the schemas (and thus the number of candidate
st tgds that are plausible for the schemas), which results in
source and target schemas with 18 to 180 relations total. The
largest scenario involved 150 candidate st tgds, or over 1045

possible mappings. We set pTuplesPerTable ¼ 50, thus obtaining
data examples with 900 to 9000 tuples. We use five scenarios
per setting and, as before, plot average CMD optimization
time and average time to run Clio (Fig. 6b). Again, CMD
optimization times are comparable to those of Clio, but for
increasing schema size, the latter increases more quickly.

COMPLEXITY. We vary the maximal number pPDSize of
candidate st tgds that explain each target tuple, which corre-
sponds to the number of head atoms in prioritized disjunc-
tion rules. This is the main parameter determining the
complexity of optimization. Our custom-made scenarios use
a single primitive, and their complexity is controlled through
two parameters, the arity pArity and the schema size
pSchemaSize. The source has pSchemaSize relations of arity pArity,
the target pSchemaSize � pArity relations of arity at most pArity.

Fig. 4. Mapping quality (IQ-Score) for the Clio baseline with ambiguous
metadata. CMD always reaches IQ-Score 1. Fig. 5. Mapping quality (IQ-Score) for CMD with dirty data.

1436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

The gold standard mapping has pSchemaSize st tgds, and the
number of potential candidates increases quadratically with
both pSchemaSize and pArity. We set pTuplesPerTable ¼ 25.

We consider all combinations of pSchemaSize 2 f5; 10; 20g
and pArity 2 f5; 10; 20g, and vary pPDSize from 10 to 70
in steps of 20. We use one scenario for each combination.
In Fig. 6c, we plot the optimization time for each value
of pSchemaSize, aggregating over pArity. In all scenarios, the
mapping selected by CMD has perfect IQ-score. This result
shows that optimization with prioritized disjunction rules is
efficient even with 70 candidates explaining the same tuples,
an order of magnitude higher than seen in our other tests.

6.6 CMD on Real Metadata and Data

The previous results show the power ofCMD on benchmark
datasets. Next we consider several real world scenarios.

AMALGAM. We first consider the well-known Amalgam
benchmark [32], using schema A1 as source and A3 as target.
To construct a data example, we select a small subset of the
data in A1. We use ideal correspondences, so this problem
tests whether CMD selects st tgds with correct joins from the
candidates generated byClio. The final evaluation contains 18
relations and 2,502 tuples. For this scenario, CMD achieves
IQ-score .99 and optimization timewas under aminute.

NEUROSCIENCE. We map Allen Brain Atlas (ABA), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Pharmacoge-
nomics Knowledgebase (PharmGKB), and UniProt (Univer-
sal Protein resource) schemas to the Semantic MediaWiki
Linked Data Environment (SMW-LDE) Ontology [33], [34].
ABA has one relation and 15 tuples; KEGG has four
relations and 56 tuples; PharmGKB has four relations
and 142 tuples; and UniProt has one relation and 15 tuples.
The common target schema has 31 relations and 54 foreign
keys. As with Amalgam, we construct data examples from
the source instances and we use ideal correspondences.
The CMD mappings for ABA, PharmGKB and UniProt
achieved perfect IQ-scores. For KEGG,CMD got a score of .93.

CMD achieved a lower score on KEGG because it
selected some candidates that reused labeled nulls for some
attributes where the gold standard exchanged variables
from the source. Our current scoring function cannot distin-
guish these, but could easily be adapted to do so.

7 RELATED WORK

USING METADATA. Using metadata information to guide
schema mapping discovery has a long tradition. The names
of schema elements (such as attributes) can be used to sug-
gest attribute correspondences (the well-known schema
matching problem) and the Clio project showed how the

schemas and constraints can be used to infer mappings [2],
[3]. HepTox [26] and ++Spicy [24] have extended this to
richer forms of metadata (including equality-generating-
dependencies). In addition, the role of data in resolving
ambiguity or incompleteness in the metadata evidence has
long been recognized, both in matching [35] and in schema
mapping, where the Data Viewer [21] and Muse [5] systems
use source and target data interactively to help a user
understand, refine or correct automatically generated map-
pings. Most systems that combine evidence from metadata
and data, do so heuristically and may fail to suggest a good
mapping under inconsistent evidence.

USING DATA EXAMPLES. A complementary approach that
uses data only is often called example-driven schema-map-
ping design [36]. An example that is closest to ours casts
schema mapping discovery from data as a formal (and fully
automated) learning problem [7]. Given a single data exam-
ple ðI; JÞ find a mapping M that is valid and fully explain-
ing (and of minimal size) for ðI; JÞ. Even for full st tgds
finding optimal mappings in this framework is DP-hard [7].
Using this framework, ten Cate et al. [11] consider the
restricted class of mappings with a single atom (relation) in
the head and in the body. They provide a greedy approxi-
mation algorithm that is guaranteed to find near optimal
(valid and fully explaining) mappings of this type, but do
not discuss experimental results.

In contrast, we do not require the mapping to be valid or
fully explaining, rather we define an optimization problem
that finds an optimal set of st tgds that minimizes errors (the
invalidity of a mapping) and unexplained tuples. Although
the number of errors can, in theory, be exponential in the size
of the mappings (as pointed out by Gottlob and Senellart [7]),
wemanage this complexity by using a set of candidate st tgds
derived from real mapping discovery systems and by using
an efficient approximation framework (PSL) to reason
over these alternative mappings. We also provide a novel
principled way of combining evidence from mappings that
contain existentials (and hence only partially explain tuples).

MULTIPLE EXAMPLES. The Eirene system returns the most
general mapping that fits a set of data examples, if one exists,
and otherwise guides a user in refining her data (not the
mapping) to identify tuples that are causing the failure [22].

This is in contrast to Muse and the Data Viewer systems
that interactively pick data to help a user refine a mapping.
Alexe et al. [12] have also studied when a mapping can be
uniquely characterized by a set of data examples. This prob-
lem has also been cast as a learning problem, where a user
labels a series of examples as positive or negative [37].
Finally, Sarma et al. [38] consider how to learn views (or full
GAV mappings) from data alone.

Fig. 6. Optimization time of CMD w.r.t. (a) size of data example, (b) schema sizes, and (c) maximal number of candidates explaining the same tuple. In
(a) and (b), the dashed line is for the Clio baseline. In (c), pSchemaSize is 20 (top), 10 (middle) or 5 (bottom).

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1437

RELATED SELECTION PROBLEMS. Belhajjame et al. [13] use
feedback from users on exchange solutions to estimate
the precision and recall of views. They present view selec-
tion as an optimization problem that maximizes either
precision (which is maximal for valid mappings) or recall
(which is maximal for fully explaining mappings), with-
out taking mapping size into account. While Belhajjame
et al. [13] do not provide runtimes for their approach,
they use a very powerful, general purpose search
algorithm [39] designed for constrained optimization
problems. In contrast, our mapping selection problem,
though NP-hard, is of a form for which PSL efficiently
finds a high quality solution. Other work finds the top-k
best matchings [40], while CMD finds only the best map-
ping. It is an open problem how to extend our optimiza-
tion to top-k mappings.

While our approach relies on a potentially noisy data
example ðI; JÞ to select among mappings, Belhajjame
et al. [13] rely on potentially noisy feedback from a user,
who annotates target tuples in a query answer as expected
(with respect to an implicit J) or unexpected, or provides
additional expected tuples. User feedback has also been
used in active learning scenarios in the context of data inte-
gration, e.g., to select consistent sets of attribute-attribute
matches among many datasources [41], or to select join
associations in the context of keyword-search based data
integration [42]. While those settings are quite different
from the one we consider here, extending CMD with active
learning to incorporate additional feedback is an interesting
direction for future work.

Similarly, the source selection problem [43] has been
modeled as a problem of finding a set of sources that mini-
mize the cost of data integration while maximizing the gain
(a score that is similar to recall). Dong et al. [43] use the
greedy randomized adaptive search procedure meta-heuris-
tic to solve the source selection problem, a heuristic which
unlike PSL does not provide any approximation guarantees
on the solution.

PROBABILISTIC REASONING. Statistical relational techniques
have been applied to a variety of data and knowledge integra-
tion problems. Perhaps closest to our approach is the use
of Markov Logic [44] for ontology alignment [45] and onto-
logical mapping construction [46]. However, we consider
more expressive mappings than either of those approaches.
Furthermore, by using PSL, we can easily integrate partial
evidence from st tgds with existential quantification through
soft truth values. More importantly, in contrast to Markov
Logic, PSL avoids the hard combinatorial optimization prob-
lem and instead provides scalable inference with guarantees
on solution quality. This advantage has proven crucial also
for applications of PSL in knowledge graph identification [15]
and data fusion [16], [17].

8 CONCLUSION

We introduce Collective Mapping Discovery (CMD), a new
approach to schema mapping selection that finds a set
of st tgds that best explains the data in the sources being
integrated. We use both metadata and data as evidence to
resolve ambiguities and incompleteness in the sources,
allowing some inconsistencies and choosing a small set

of mappings that work collectively to explain the data.
To solve this problem, we use and extend probabilistic
soft logic, casting the problem as efficient joint probabilis-
tic inference. The declarative nature of the PSL program
makes it easy to extend CMD to include additional forms
of evidence and constraints, coming from the domain,
from user feedback, or other sources. In future work, we
plan to explore weight learning techniques and investi-
gate their impact in different problem settings.

ACKNOWLEDGMENTS

AK has been supported by Research Foundation Flanders
(FWO). RJM is supported by NSERC. LG was supported by
the National Science Foundation under Grant Numbers CCF-
1740850 and IIS-1703331, AFRL and DARPA. The authors
thank Boris Glavic, Patricia Arocena, GianniMecca, Donatello
Santoro, and Radu Ciucanu for their valuable help with
iBench and ++Spicy; and Craig Knoblock for the Neuroscience
problem set.

REFERENCES

[1] B. ten Cate and P. G. Kolaitis, “Structural characterizations of
schema-mapping languages,” Commun. ACM, vol. 53, no. 1,
pp. 101–110, 2010.

[2] R. J. Miller, L. M. Haas, and M. Hern�andez, “Schema mapping as
query discovery,” in Proc. 26th Int. Conf. Very Large Data Bases,
2000, pp. 77–88.

[3] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hern�andez, and R. Fagin,
“Translating web data,” in Proc. 28th Int. Conf. Very Large Data
Bases, 2002, pp. 598–609.

[4] H. Elmeleegy, A. K. Elmagarmid, and J. Lee, “Leveraging query
logs for schema mapping generation in U-MAP,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2011, pp. 121–132.

[5] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan, “Muse: Map-
ping understanding and design by example,” in Proc. IEEE 24th
Int. Conf. Data Eng., 2008, pp. 10–19.

[6] B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “Schema mappings and
data examples,” in Proc. 16th Int. Conf. Extending Database Technol.,
2013, pp. 777–780.

[7] G. Gottlob and P. Senellart, “Schema mapping discovery from
data instances,” J. ACM, vol. 57, no. 2, 2010, Art. no. 6.

[8] L. Qian, M. J. Cafarella, and H. Jagadish, “Sample-driven schema
mapping,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2012,
pp. 73–84.

[9] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa,
“Schema mapping verification: The spicy way,” in Proc. 11th Int.
Conf. Extending Database Technol., 2008, pp. 85–96.

[10] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “Designing
and refining schema mappings via data examples,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2011, pp. 133–144.

[11] B. ten Cate, P. G. Kolaitis, K. Qian, and W.-C. Tan,
“Approximation algorithms for schema-mapping discovery from
data examples,” in Proc. Alberto Mendelzon Workshop Found. Data
Manage., 2015, pp. 24–34

[12] B. Alexe, B. ten Cate, P. G. Kolaitis, andW.-C. Tan, “Characterizing
schema mappings via data examples,” ACM Trans. Database Syst.,
vol. 36, no. 4, 2011, Art. no. 23.

[13] K. Belhajjame, N. W. Paton, S. Embury, A. A. Fernandes, and
C. Hedeler, “Incrementally improving dataspaces based on user
feedback,” Inf. Syst., vol. 38, pp. 656–687, 2013.

[14] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor, “Hinge-loss
Markov random fields and probabilistic soft logic,” J. Mach. Learn.
Res. (JMLR), vol. 18, no. 109, pp. 1–67, 2017.

[15] J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in Proc. Int. Semantic Web Conf., 2013, pp. 542–557.

[16] S. Fakhraei, B. Huang, L. Raschid, and L. Getoor, “Network-based
drug-target interaction prediction with probabilistic soft logic,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 11, no. 5, pp. 775–787,
Sep./Oct. 2014.

1438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 8, AUGUST 2019

[17] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and L. Getoor,
“HyPER: A flexible and extensible probabilistic framework for
hybrid recommender systems,” in Proc. 9th ACM Conf. Recom-
mender Syst., 2015, pp. 99–106.

[18] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller, “The iBench
integration metadata generator,” Proc. VLDB Endowment, vol. 9,
no. 3, pp. 108–119, 2015.

[19] G. Mecca, P. Papotti, and D. Santoro, “IQ-METER-An evaluation
tool for data-transformation systems,” in Proc. IEEE 30th Int. Conf.
Data Eng., 2014, pp. 1218–1221.

[20] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor, “A collective,
probabilistic approach to schema mapping,” in Proc. IEEE 33rd
Int. Conf. Data Eng., 2017, pp. 921–932.

[21] L.-L. Yan, R. J. Miller, L. Haas, and R. Fagin, “Data-driven under-
standing and refinement of schema mappings,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2001, pp. 485–496.

[22] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan, “EIRENE:
Interactive design and refinement of schema mappings via data
examples,” Proc. VLDB Endowment, vol. 4, no. 12, pp. 1414–1417,
2011.

[23] R. Fagin, L. M. Haas, M. A. Hern�andez, R. J. Miller, L. Popa, and
Y. Velegrakis, “Clio: Schema mapping creation and data
exchange,” in Conceptual Modeling: Foundations and Applications-
Essays in Honor of John Mylopoulos, Berlin, Germany: Springer,
2009, pp. 198–236.

[24] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. Santoro,
“++Spicy: An opensource tool for second-generation schemamap-
ping and data exchange,” Proc. VLDB Endowment, vol. 4, no. 12,
pp. 1438–1441, 2011.

[25] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
Semantics and query answering,” Theoretical Comput. Sci.,
vol. 336, no. 1, pp. 89–124, 2005.

[26] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and
R. Pottinger, “HePToX: Marrying XML and heterogeneity in your
P2P databases,” in Proc. 31st Int. Conf. Very Large Data Bases, 2005,
pp. 1267–1270.

[27] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[28] L. Getoor and B. Taskar, Eds., Introduction to Statistical Relational
Learning. Cambridge, MA, USA: MIT Press, 2007.

[29] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons,
“ToXgene: A template-based data generator for XML,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2002, pp. 616–616.

[30] Z. Bellahsene, A. Bonifati, F. Duchateau, and Y. Velegrakis,
“On evaluating schemamatching andmapping,” in Schema Match-
ing andMapping. Berlin, Germany: Springer, 2011, pp. 253–291.

[31] G. Mecca, P. Papotti, S. Raunich, and D. Santoro, “What is the IQ
of your data transformation system?” in Proc. 21st ACM Int. Conf.
Inf. Knowl. Manage., 2012, pp. 872–881.

[32] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and V. Lee,
“The amalgam schema and data integration test suite,” 2001.
[Online]. Available: www.cs.toronto.edu/ miller/amalgam

[33] C. Becker, C. Bizer, M. Erdmann, and M. Greaves, “Extending
SMW+ with a linked data integration framework,” in Proc. Int.
Semantic Web Conf., 2011, pp. 45–48.

[34] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, and P. Mallick, “Semi-automatically
mapping structured sources into the Semantic Web,” in Proc. 9th
Int. Conf. The Semantic Web, 2012, pp. 375–390.

[35] J. Kang and J. F. Naughton, “On schema matching with opaque
column names and data values,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2003, pp. 205–216.

[36] B. ten Cate, P. G. Kolaitis, and W. C. Tan, “Schema mappings and
data examples,” in Proc. 16th Int. Conf. Extending Database Technol.,
2013, pp. 777–780.

[37] B. ten Cate, V. Dalmau, and P. G. Kolaitis, “Learning schema
mappings,” ACM Trans. Database Syst., vol. 38, no. 4, 2013,
Art. no. 28.

[38] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom, “Synthesizing view definitions from data,” in Proc. 13th
Int. Conf. Database Theory, 2010, pp. 89–103.

[39] C. Audet and J. E. Dennis Jr., “Mesh adaptive direct search
algorithms for constrained optimization,” SIAM J. Optimization,
vol. 17, no. 1, pp. 188–217, 2006.

[40] A. Gal, “Managing uncertainty in schema matching with top-K
schema mappings,” in Proc. J. Data Semantics VI: Special Issue
Emergent Semantics, 2006, pp. 90–114.

[41] N. Q. V. Hung, N. T. Tam, Z. Mikl�os, K. Aberer, A. Gal, and
M. Weidlich, “Pay-as-you-go reconciliation in schema matching
networks,” in Proc. IEEE 30th Int. Conf. Data Eng., 2014, pp. 220–231.

[42] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and C. Yu, “Actively
soliciting feedback for query answers in keyword search-based
data integration,” Proc. VLDB Endowment, vol. 6, no. 3, pp. 205–
216, 2013.

[43] X. L. Dong, B. Saha, and D. Srivastava, “Less is more: Selecting
sources wisely for integration,” Proc. VLDB Endowment, vol. 6,
no. 2, pp. 37–48, 2012.

[44] M. Richardson and P. Domingos, “Markov logic networks,”Mach.
Learn., vol. 62, no. 1/2, pp. 107–136, 2006.

[45] M. Niepert, C. Meilicke, and H. Stuckenschmidt, “A probabilistic-
logical framework for ontology matching,” in Proc. 24th AAAI
Conf. Artif. Intell., 2010, pp. 1413–1418.

[46] C. Zhang, R. Hoffmann, and D. S. Weld, “Ontological smoothing
for relation extraction with minimal supervision,” in Proc. 26th
AAAI Conf. Artif. Intell., 2012, pp. 157–163.

Angelika Kimmig received the Diplom degree in computer science from
the Albert-Ludwigs-Universit€at Freiburg, and the PhD degree in com-
puter science from KU Leuven. She is a lecturer with the School of Com-
puter Science and Informatics, Cardiff University. Her research interests
include symbolic AI, reasoning under uncertainty, machine learning,
logic programming, and especially combinations thereof such as proba-
bilistic programming and statistical relational learning.

Alex Memory received the BS degree in computer engineering from
North Carolina State University and the MS degree in applied math from
Johns Hopkins University. He is a student with the Department of
Computer Science, University of Maryland, and a research scientist at
Leidos. His research interests include machine learning, data integra-
tion, and anomaly detection. He is a member of the IEEE.

Ren�ee J. Miller received the bachelor’s degree in mathematics and cog-
nitive science from MIT, and the PhD degree in computer science from
the University of Wisconsin, Madison. She is a University Distinguished
Professor of computer science at Northeastern University. She is a
fellow of the Royal Society of Canada, Canada’s National Academy of
Science. She received the US Presidential Early Career Award for Sci-
entists and Engineers (PECASE), the highest honor bestowed by the
United States Government on outstanding scientists and engineers
beginning their careers. She received an NSF CAREER Award and
the Ontario Premiers Research Excellence Award. She formerly held
the Bell Canada Chair of Information Systems at the University of
Toronto and is a fellow of the ACM. She and her co-authors (Fagin,
Kolaitis, and Popa) received the (10 Year) ICDT Test-of-Time Award
for their influential 2003 paper establishing the foundations of data
exchange. She is editor-in-chief of the VLDB Journal and was formerly
president of the VLDB Foundation. She is a member of the IEEE.

Lise Getoor received the BS degree from UC Santa Barbara, the MS
degree from UC Berkeley, and PhD degree from Stanford University, in
2001. She is a professor with the Computer Science Department,
University of California, Santa Cruz. Her research areas include
machine learning, data integration, and reasoning under uncertainty,
with an emphasis on graph and network data. She is a fellow of the
Association for Artificial Intelligence, an elected board member of
the International Machine Learning Society, serves on the board of the
Computing Research Association (CRA), and was co-chair for ICML
2011. She is a recipient of an NSF Career Award and 12 Best Paper and
Best Student Paper Awards. She was a professor with the Computer
Science Department, University of Maryland, College Park, from 2001-
2013. She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIMMIG ETAL.: A COLLECTIVE, PROBABILISTIC APPROACH TO SCHEMA MAPPING USING DIVERSE NOISY EVIDENCE 1439

